Nutrient Assessment Protocol for Lakes and Reservoirs in New Mexico

Seva Joseph

Monitoring and Assessment Section of the Surface Water Quality Bureau New Mexico Environment Department

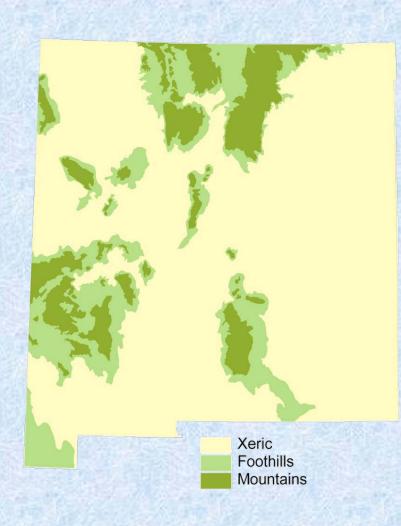
How to determine if lakes and reservoirs are impaired by nutrient enrichment based on New Mexico's narrative standard?

"Plant nutrients from other than natural causes shall not be present in concentrations which will produce undesirable aquatic life or result in a dominance of nuisance species in surface waters of the state."

This narrative criterion is challenging to assess because:

- distinguishing nutrients from "other than natural causes" is difficult.
- the concentration of nutrient that produce "undesirable aquatic life" and results in the impairment of designated uses are not defined

Impairment thresholds were needed to translate the narrative criterion into quantifiable endpoints.


Available NM Lakes Dataset

- Water quality data from 1989 through 2010 for :
 - Total Phosphorus
 - Total Kjeldahl Nitrogen
 - Nitrate Plus Nitrite
 - Secchi depth

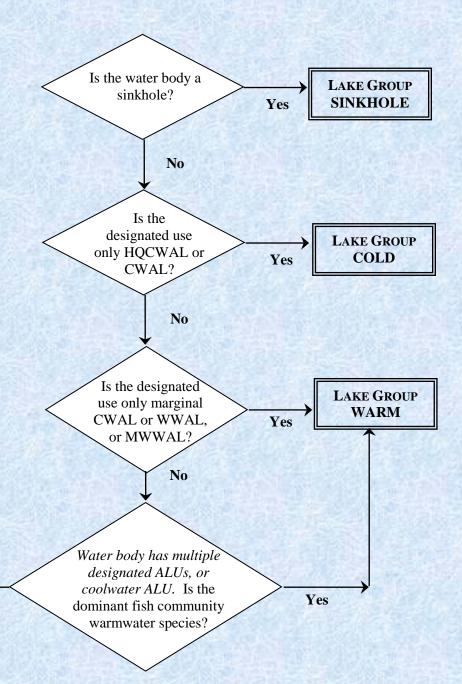
- Chlorophyll a concentration
- Phytoplankton Community Comp
- Dissolved Oxygen depth profile
- 406 sample events from 107 sites on 78 lakes and reservoirs
- Data from 2000-2010 was compiled from the SWQB Database
- Data from 1980-1999 was downloaded from Archival STORET and hard copies of old lake surveys

Partition the datasets

- Limited aquatic resources in NM
 - 78 lakes and reservoirs in 121,600 square miles
- High ecological variability
 - alpine to desert
- Natural lakes vs reservoirs

Lake Classification System

- Separate out sinkholes
- Divide the rest by ALU
 - o Warmwater
 - o Coldwater


NM aquatic live uses:

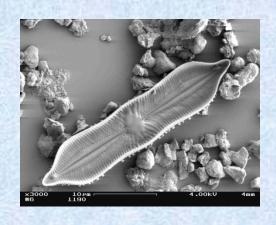
High Quality Coldwater
Coldwater
Coolwater
Marginal Coldwater
Warmwater
Marginal Warmwater

LAKE GROUP

COLD

No

What, when, and where?

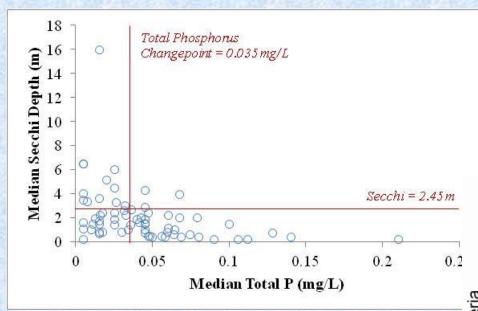

What indicators? TN, TP, Secchi, chlorophyll, phytoplankton and DO

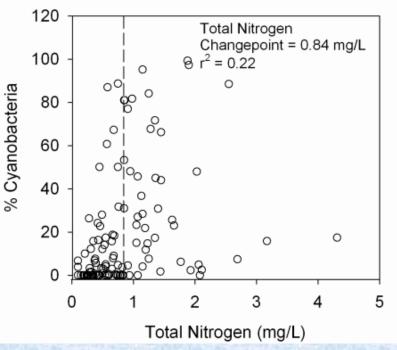
DO profile indicators: average of the top 3m, average bottom 3 m, the proportion of the profile below the standard, pass or fail assessment protocol

The proportion (%) of the phytoplankton community made up of Cyanophytes

When to collect data? Limited data to those collected during the growing season (defined as time between first and last average frost) - did not produce different thresholds, so used all available data.

Where should data be collected from? Limited the assessment to data collected at the deep station - as the shallow stations were more strongly influenced by wave action and materials suspended in reservoir inflows




Data Analysis

- Percentiles of nutrient indicators were calculated for the different classes of lakes and reservoirs
- Changepoint and Regression Tree Analyses were used to identify environmental thresholds that result in an ecological change (Analytical Support for Identifying Water Quality Thresholds in New Mexico Surface Waters, J. Thad Scott and Brian E. Haggard)
- Review of literature threshold values

Change point Analyses

Candidate impairment thresholds

Designated Use/Lake class	Chl-a (µg/L)	Secchi Depth (m)	TP (mg/L)	TN (mg/L)	% Cyano- bacteria	Organization/ Author	Method of threshold derivation	
Coldwater candidate thresholds								
NM Coldwater ALU	2.3	1.5	0.03	0.5	-	NMED SWQB	Median of lake group	
NM Coldwater ALU	6	3	0.05	0.82	21%	NMED SWQB	75 th percentile of lake group	
NM Coldwater ALU	-	2.45	0.04	0.9	38%	U. of Arkansas	Changepoint analysis	
ID Mountain	1.8	-	0.015	0.28		ID DEQ	75 th percentile of reference	
AZ Coldwater	5-15	1.5-2.0	0.70	1.2	>50%	Arizona DEQ	AZ trophic index	
mesotrophic-eutrophic boundary	7.5	2	0.030	0.65	-	Nürnberg (1996)	Literature review	
Warmwater candidate thresholds								
Warmwater ALU	3.2	1	0.04	0.6	-	NMED SWQB	Median of lake group	
Warmwater ALU	10	1.8	0.07	0.84	31%	NMED SWQB	75 th percentile of lake group	
Warmwater ALU	-	-	0.04	1.41	38%	U. of Arkansas	Changepoint analysis	
ID Xeric	7.79	-	0.048	0.514	-	ID DEQ	75 th percentile of reference	
AZ Warmwater	25-40	0.8-1.0	0.13	1.7	>50%	Arizona DEQ	AZ trophic index	
KS Central Plains & SW Tablelands	11	1.2	0.044	0.70	-	KSU & KS Dept Health Env.	Median of best 1/3	
Sinkhole candidate thresholds								
Sinkhole lakes	-	6	0.025	1.42	-	NMED SWQB	75 th percentile of sinkhole lakes	
oligotrophic- mesotrophic boundary	3.5	4	0.01	0.35	-	Nürnberg (1996)	Literature review	

Nutrient-related impairment threshold values for New Mexico's lakes and reservoirs

CAUSAL	RESPONSE VARIABLES					
Lake Group	TP (mg/L)	TN (mg/L)	Secchi depth (m)	Chl-a (μg/L)	% Cyano- bacteria	DO concentration (mg/L)
COLD	≤ 0.03	≤ 0.9	≥ 2.0	≤ 7.5	≤ 38%	See NMAC for applicable
WARM SINKHOLE	≤ 0.04 < 0.025	≤ 1.4 < 1.42	≥ 1.2 ≥ 4.0	≤11 ≤3.5	≤ 38%	DO criterion

Generalized flowchart for determining nutrient impairment using multiple lines of evidence

Do one or more * If only Secchi depth violates, **FULLY** variables indicate evaluate other data (e.g. Forel Ule enrichment? No SUPPORTING color orTSS) to determine if low Secchi depth is the result of elevated Yes levels of non-algal particulates Does TN or TP indicate enrichment? Does at least one response Do chl-a and at least Yes No variable (Secchi depth, chl-a, one other response cvanobacteria, or DO) variable indicate indicate enrichment? enrichment? Yes Yes **FULLY** Not NOT **FULLY** SUPPORTING* SUPPORTING SUPPORTING SUPPORTING

Lake TMDLs?

- New Mexico completed the TMDL Consent Decree in 2007. It did not include any lakes.
- New Mexico currently addresses impairments as part of a watershed TMDL documents. To date, no lake TMDLs have been developed.
- SWQB plans to write lake TMDLs within the watershed TMDL document framework which will address both stream and lake impairments.
- TMDL staff and lake monitoring staff have began coordinating on the collection of data for TMDL development including collection of data at lake inlets and outlets (which had not been don in the past.
- As has been done with some stream TMDLs, the assessment threshold values may be used as numeric targets for the parameters of concern.

Station	ALU	Sampling Date	Dissolved Oxygen (mg/L)	Chlorophyll a (µg/L)	Total Phosphorus (mg/L)	Total Nitrogen (mg/L)	Secchi Depth (m)	D.O. Assess- ment	% Cyano- phyte
Abiquiu Reservoir	CW	4/24/2012	9.35	2.10	0.011	0.3	4	FS	0
		7/31/2012	7.52	5.20	0.05	0.6	5	FS	3
		8/28/2012	6.72	6.30	0.005	0.38	2.7	FS	0
		10/2/2012	6.69	1.60	0.015	0.3	2.5	FS	1
Lake Roberts	CW	3/29/2011	7.43	14.52	0.05	0.3	0.8	0	FS
		6/21/2011	8.93	9.35	0.03	0.3	1.3	27	FS
		8/15/2011	6.77	12.04	0.14	0.71	0.9	43	FS
		10/18/2011	8.5	rejected	0.02	0.3	0.8	39	FS
Snow Lake	CW	3/30/2011	8.36	8.12	0.1	0.3	0.3	0	FS
		6/22/2011	8.34	18.51	0.08	1.09	0.3	35	NS
		8/16/2011	6.75	11.84	0.13	1.02	0.4	67	FS
		10/19/2011	4.72	rejected	0.13	1.34	0.4	7	NS
		ON LOUP							
Applicable thresholds			6	7.5	0.03	0.9	2	38	- 425

# TP	# TN	% Chloro 0	D.O. Assess ment FS	% Cyano > 38%
2	0	100	FS	50
4	3	100	NS	25

Station	one or more exceed	TN or TP exceed	at least one response	Final Nutrient Assess
Abiquiu Reservoir	NO	NO		Full Support
Lake Roberts	YES	YES	YES	Non Support
Snow Lake	YES	YES	YES	Non Support